來(lái)源:網(wǎng)絡(luò)資源 作者:中考網(wǎng)整理 2019-05-30 17:43:10
中考數(shù)學(xué)考前復(fù)習(xí)輔導(dǎo):不等式與不等式組概念
1.不等式:用符號(hào)"<",">","≤","≥"表示大小關(guān)系的式子叫做不等式。
2.不等式分類(lèi):不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。
一般地,用純粹的大于號(hào)、小于號(hào)">","<"連接的不等式稱(chēng)為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))、不大于號(hào)(小于或等于號(hào))"≥","≤"連接的不等式稱(chēng)為非嚴(yán)格不等式,或稱(chēng)廣義不等式。
3.不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。
4.不等式的解集:一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。
5.不等式解集的表示方法:
(1)用不等式表示:一般的,一個(gè)含未知數(shù)的不等式有無(wú)數(shù)個(gè)解,其解集是一個(gè)范圍,這個(gè)范圍可用最簡(jiǎn)單的不等式表達(dá)出來(lái),例如:x-1≤2的解集是x≤3
(2)用數(shù)軸表示:不等式的解集可以在數(shù)軸上直觀地表示出來(lái),形象地說(shuō)明不等式有無(wú)限多個(gè)解,用數(shù)軸表示不等式的解集要注意兩點(diǎn):一是定邊界線;二是定方向。
6.解不等式可遵循的一些同解原理
(1)不等式F(x)<G(x)與不等式G(x)>F(x)同解。
(2)如果不等式F(x)<G(x)的定義域被解析式H(x)的定義域所包含,那么不等式F(x)<G(x)與不等式H(x)+F(x)
(3)如果不等式F(x)<G(x)的定義域被解析式H(x)的定義域所包含,并且H(x)>0,那么不等式F(x)<G(x)與不等式H(x)F(x)0,那么不等式F(x)<G(x)與不等式H(x)F(x)>H(x)G(x)同解。
7.不等式的性質(zhì):
(1)如果x>y,那么yy;(對(duì)稱(chēng)性)
(2)如果x>y,y>z;那么x>z;(傳遞性)
(3)如果x>y,而z為任意實(shí)數(shù)或整式,那么x+z>y+z;(加法則)
(4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz
歡迎使用手機(jī)、平板等移動(dòng)設(shè)備訪問(wèn)中考網(wǎng),2023中考一路陪伴同行!>>點(diǎn)擊查看