來源:網(wǎng)絡(luò)資源 2019-09-01 21:04:48
試題一:
一副撲克牌(去掉兩張王牌),每人隨意摸兩張牌,至少有多少人才能保證他們當(dāng)中一定有兩人所摸兩張牌的花色情況是相同的?
解答:撲克牌中有方塊、梅花、黑桃、紅桃4種花色,2張牌的花色可以有:2張方塊,2張梅花,2張紅桃,2張黑桃,1張方塊1張梅花,1張方塊1張黑桃,1張方塊1張紅桃,1張梅花1張黑桃,1張梅花1張紅桃,1張黑桃1張紅桃共計10種情況。把這10種花色配組看作10個抽屜,只要蘋果的個數(shù)比抽屜的個數(shù)多1個就可以有題目所要的結(jié)果。所以至少有11個人。
試題二:
有一副撲克牌共54張,問:至少摸出多少張才能保證:(1)其中有4張花色相同?(2)四種花色都有?
解答:一副撲克牌有2張王牌,4種花色,每種花色13張,共52張牌。(1)按照最不利的情況,先取出2張王牌,然后每種花色取3張,這個時候無論再取哪一種花色的牌都能保證有一種花色是4張牌,所以需要取2+3×4+1=15張牌即可滿足要求。(2)同樣的,仍然按照最不利的情況,取2張王牌,然后3種花色每種取13張,最后任取一種花色,此時再取一張即可保證每種花色都有。共需取2+13×3+1=42張牌即可滿足要求。
試題三:
小學(xué)生數(shù)學(xué)競賽,共20道題,有20分基礎(chǔ)分,答對一題給3分,不答給1分,答錯一題倒扣1分,若有1978人參加競賽,問至少有人得分相同。
解答:20+3×20=80,20-1×20=0,所以若20道題全答對可得最高分80分,若全答錯得最低分0分。由于每一道題都得奇數(shù)分或扣奇數(shù)分,20個奇數(shù)相加減所得結(jié)果為偶數(shù),再加上20分基礎(chǔ)分仍為偶數(shù),所以每個人所得分值都為偶數(shù)。而0到80之間共41個偶數(shù),所以一共有41種分值,即41個抽屜。1978÷41=48……10,所以至少有49人得分相同。
歡迎使用手機(jī)、平板等移動設(shè)備訪問中考網(wǎng),2024中考一路陪伴同行!>>點擊查看