來源:網(wǎng)絡(luò)資源 作者:中考網(wǎng)整理 2020-04-02 17:04:19
例:若直角三角形三條邊分別為3、4、c,求c的值。
分析:此題中的c并不一定是代表斜邊,也可能是直角邊,而有些同學(xué)錯(cuò)誤地將其與勾股定理中的c混淆起來,認(rèn)為c一定是斜邊,導(dǎo)致漏解。
例:圓O的半徑為5cm,兩條互相平行的弦長分別為6cm、8cm,求兩條弦之間的距離。
分析:兩條弦在圓中的位置關(guān)系可能在圓心的同側(cè)或者在圓心的兩側(cè),因此在解答時(shí)不能依據(jù)自己的習(xí)慣進(jìn)行思考。
三、忽視特殊性,導(dǎo)致漏解
許多問題中存在著特殊情況,一旦忽視了這些特殊情況,往往容易導(dǎo)致漏解。
例:已知拋物線y=x2及該拋物線上一點(diǎn)A(1,1)求與此拋物線只有一個(gè)公共點(diǎn)A的直線方程。
分析:此題大部分同學(xué)設(shè)直線方程為y=kx+b,并與y=x2組成方程組,消去y,解得直線方程y=2x-1,但還有一條特殊的直線x=1也是符合題意的,這條直線中的k不存在,因而用以上方法求解必定會(huì)被遺漏。
上述是同學(xué)們?cè)诮獯鸹A(chǔ)題中經(jīng)常出現(xiàn)的分類思考不全面的情況,而在利用分類討論思想求解相關(guān)綜合題有時(shí)比較復(fù)雜,在這里介紹一些方法,給同學(xué)們一些啟示。
首先,要嚴(yán)密審題,一字一句閱讀,切勿匆匆看題。有時(shí)疏忽了一字一句,使該討論的不討論,即使討論了也不全面,如題中出現(xiàn)的“線段”、“射線”或“直線”都是有區(qū)別的,不能把它們都當(dāng)作“線段”去求解。
例如:方程(a-1)x2-6x+4=0有實(shí)數(shù)根,則a的取值范圍是多少?
對(duì)此題,同學(xué)們往往認(rèn)為只要利用“△”求解一元二次方程,但題中出現(xiàn)“方程”,應(yīng)該既要考慮它可能是一元二次方程,也可能是一元一次方程,不應(yīng)人為地縮小了a的范圍僅當(dāng)作一元二次方程去求解。
其次,對(duì)可能出現(xiàn)的幾種情況要全面考慮到,是否還有其他可能情況,爭取做到全面、完整、勿缺、勿漏。
歡迎使用手機(jī)、平板等移動(dòng)設(shè)備訪問中考網(wǎng),2024中考一路陪伴同行!>>點(diǎn)擊查看