中考網(wǎng)
全國站
快捷導(dǎo)航 中考政策指南 2024熱門中考資訊 中考成績查詢 歷年中考分?jǐn)?shù)線 中考志愿填報 各地2019中考大事記 中考真題及答案大全 歷年中考作文大全 返回首頁
您現(xiàn)在的位置:中考 > 知識點(diǎn)庫 > 初中數(shù)學(xué)知識點(diǎn) > 幾何 > 正文

2020年中考數(shù)學(xué)平面幾何60個定理

來源:網(wǎng)絡(luò)資源 2020-06-01 08:49:56

中考真題

智能內(nèi)容
  1、勾股定理(畢達(dá)哥拉斯定理)
 
  2、射影定理(歐幾里得定理)
 
  3、三角形的三條中線交于一點(diǎn),并且,各中線被這個點(diǎn)分成2:1的兩部分
 
  4、四邊形兩邊中心的連線的兩條對角線中心的連線交于一點(diǎn)
 
  5、間隔的連接六邊形的邊的中心所作出的兩個三角形的重心是重合的。
 
  6、三角形各邊的垂直一平分線交于一點(diǎn)。
 
  7、三角形的三條高線交于一點(diǎn)
 
  8、設(shè)三角形ABC的外心為O,垂心為H,從O向BC邊引垂線,設(shè)垂足為L,則AH=2OL
 
  9、三角形的外心,垂心,重心在同一條直線(歐拉線)上。
 
  10、(九點(diǎn)圓或歐拉圓或費(fèi)爾巴赫圓)三角形中,三邊中心、從各頂點(diǎn)向其對邊所引垂線的垂足,以及垂心與各頂點(diǎn)連線的中點(diǎn),這九個點(diǎn)在同一個圓上,
 
  11、歐拉定理:三角形的外心、重心、九點(diǎn)圓圓心、垂心依次位于同一直線(歐拉線)上
 
  12、庫立奇*大上定理:(圓內(nèi)接四邊形的九點(diǎn)圓)
 
  圓周上有四點(diǎn),過其中任三點(diǎn)作三角形,這四個三角形的九點(diǎn)圓圓心都在同一圓周上,我們把過這四個九點(diǎn)圓圓心的圓叫做圓內(nèi)接四邊形的九點(diǎn)圓。
 
  13、(內(nèi)心)三角形的三條內(nèi)角平分線交于一點(diǎn),內(nèi)切圓的半徑公式:r=(s-a)(s-b)(s-c)s,s為三角形周長的一半
 
  14、(旁心)三角形的一個內(nèi)角平分線和另外兩個頂點(diǎn)處的外角平分線交于一點(diǎn)
 
  15、中線定理:(巴布斯定理)設(shè)三角形ABC的邊BC的中點(diǎn)為P,則有AB2+AC2=2(AP2+BP2)
 
  16、斯圖爾特定理:P將三角形ABC的邊BC內(nèi)分成m:n,則有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2
 
  17、波羅摩及多定理:圓內(nèi)接四邊形ABCD的對角線互相垂直時,連接AB中點(diǎn)M和對角線交點(diǎn)E的直線垂直于CD
 
  18、阿波羅尼斯定理:到兩定點(diǎn)A、B的距離之比為定比m:n(值不為1)的點(diǎn)P,位于將線段AB分成m:n的內(nèi)分點(diǎn)C和外分點(diǎn)D為直徑兩端點(diǎn)的定圓周上
 
  19、托勒密定理:設(shè)四邊形ABCD內(nèi)接于圓,則有AB×CD+AD×BC=AC×BD
 
  20、以任意三角形ABC的邊BC、CA、AB為底邊,分別向外作底角都是30度的等腰△BDC、△CEA、△AFB,則△DEF是正三角形
 
  21、愛爾可斯定理1:若△ABC和△DEF都是正三角形,則由線段AD、BE、CF的中心構(gòu)成的三角形也是正三角形。
 
  22、愛爾可斯定理2:若△ABC、△DEF、△GHI都是正三角形,則由三角形△ADG、△BEH、△CFI的重心構(gòu)成的三角形是正三角形。
 
  23、梅涅勞斯定理:設(shè)△ABC的三邊BC、CA、AB或其延長線和一條不經(jīng)過它們?nèi)我豁旤c(diǎn)的直線的交點(diǎn)分別為P、Q、R則有BPPC×CQQA×ARRB=1
 
  24、梅涅勞斯定理的逆定理:(略)
 
  25、梅涅勞斯定理的應(yīng)用定理1:設(shè)△ABC的∠A的外角平分線交邊CA于Q、∠C的平分線交邊AB于R,、∠B的平分線交邊CA于Q,則P、Q、R三點(diǎn)共線。
 
  26、梅涅勞斯定理的應(yīng)用定理2:過任意△ABC的三個頂點(diǎn)A、B、C作它的外接圓的切線,分別和BC、CA、AB的延長線交于點(diǎn)P、Q、R,則P、Q、R三點(diǎn)共線
 
  27、塞瓦定理:設(shè)△ABC的三個頂點(diǎn)A、B、C的不在三角形的邊或它們的延長線上的一點(diǎn)S連接面成的三條直線,分別與邊BC、CA、AB或它們的延長線交于點(diǎn)P、Q、R,則BPPC×CQQA×ARRB()=1.
 
  28、塞瓦定理的應(yīng)用定理:設(shè)平行于△ABC的邊BC的直線與兩邊AB、AC的交點(diǎn)分別是D、E,又設(shè)BE和CD交于S,則AS一定過邊BC的中心M
 
  29、塞瓦定理的逆定理:(略)
 
  30、塞瓦定理的逆定理的應(yīng)用定理1:三角形的三條中線交于一點(diǎn)
 
  31、塞瓦定理的逆定理的應(yīng)用定理2:設(shè)△ABC的內(nèi)切圓和邊BC、CA、AB分別相切于點(diǎn)R、S、T,則AR、BS、CT交于一點(diǎn)。
 
  32、西摩松定理:從△ABC的外接圓上任意一點(diǎn)P向三邊BC、CA、AB或其延長線作垂線,設(shè)其垂足分別是D、E、R,則D、E、R共線,(這條直線叫西摩松線)
 
  33、西摩松定理的逆定理:(略)
 
  34、史坦納定理:設(shè)△ABC的垂心為H,其外接圓的任意點(diǎn)P,這時關(guān)于△ABC的點(diǎn)P的西摩松線通過線段PH的中心。
 
  35、史坦納定理的應(yīng)用定理:△ABC的外接圓上的一點(diǎn)P的關(guān)于邊BC、CA、AB的對稱點(diǎn)和△ABC的垂心H同在一條(與西摩松線平行的)直線上。這條直線被叫做點(diǎn)P關(guān)于△ABC的鏡象線。
 
  36、波朗杰、騰下定理:設(shè)△ABC的外接圓上的三點(diǎn)為P、Q、R,則P、Q、R關(guān)于△ABC交于一點(diǎn)的充要條件是:弧AP+弧BQ+弧CR=0(mod2∏)。
 
  37、波朗杰、騰下定理推論1:設(shè)P、Q、R為△ABC的外接圓上的三點(diǎn),若P、Q、R關(guān)于△ABC的西摩松線交于一點(diǎn),則A、B、C三點(diǎn)關(guān)于△PQR的的西摩松線交于與前相同的一點(diǎn)
 
  38、波朗杰、騰下定理推論2:在推論1中,三條西摩松線的交點(diǎn)是A、B、C、P、Q、R六點(diǎn)任取三點(diǎn)所作的三角形的垂心和其余三點(diǎn)所作的三角形的垂心的連線段的中點(diǎn)。
 
  39、波朗杰、騰下定理推論3:考查△ABC的外接圓上的一點(diǎn)P的關(guān)于△ABC的西摩松線,如設(shè)QR為垂直于這條西摩松線該外接圓珠筆的弦,則三點(diǎn)P、Q、R的關(guān)于△ABC的西摩松線交于一點(diǎn)
 
  40、波朗杰、騰下定理推論4:從△ABC的頂點(diǎn)向邊BC、CA、AB引垂線,設(shè)垂足分別是D、E、F,且設(shè)邊BC、CA、AB的中點(diǎn)分別是L、M、N,則D、E、F、L、M、N六點(diǎn)在同一個圓上,這時L、M、N點(diǎn)關(guān)于關(guān)于△ABC的西摩松線交于一點(diǎn)。
 
  41、關(guān)于西摩松線的定理1:△ABC的外接圓的兩個端點(diǎn)P、Q關(guān)于該三角形的西摩松線互相垂直,其交點(diǎn)在九點(diǎn)圓上。
 
  42、關(guān)于西摩松線的定理2(安寧定理):在一個圓周上有4點(diǎn),以其中任三點(diǎn)作三角形,再作其余一點(diǎn)的關(guān)于該三角形的西摩松線,這些西摩松線交于一點(diǎn)。
 
  43、卡諾定理:通過△ABC的外接圓的一點(diǎn)P,引與△ABC的三邊BC、CA、AB分別成同向的等角的直線PD、PE、PF,與三邊的交點(diǎn)分別是D、E、F,則D、E、F三點(diǎn)共線。
 
  44、奧倍爾定理:通過△ABC的三個頂點(diǎn)引互相平行的三條直線,設(shè)它們與△ABC的外接圓的交點(diǎn)分別是L、M、N,在△ABC的外接圓取一點(diǎn)P,則PL、PM、PN與△ABC的三邊BC、CA、AB或其延長線的交點(diǎn)分別是D、E、F,則D、E、F三點(diǎn)共線
 
  45、清宮定理:設(shè)P、Q為△ABC的外接圓的異于A、B、C的兩點(diǎn),P點(diǎn)的關(guān)于三邊BC、CA、AB的對稱點(diǎn)分別是U、V、W,這時,QU、QV、QW和邊BC、CA、AB或其延長線的交點(diǎn)分別是D、E、F,則D、E、F三點(diǎn)共線
 
  46、他拿定理:設(shè)P、Q為關(guān)于△ABC的外接圓的一對反點(diǎn),點(diǎn)P的關(guān)于三邊BC、CA、AB的對稱點(diǎn)分別是U、V、W,這時,如果QU、QV、QW與邊BC、CA、AB或其延長線的交點(diǎn)分別為ED、E、F,則D、E、F三點(diǎn)共線。(反點(diǎn):P、Q分別為圓O的半徑OC和其延長線的兩點(diǎn),如果OC2=OQ×OP則稱P、Q兩點(diǎn)關(guān)于圓O互為反點(diǎn))
 
  47、朗古來定理:在同一圓同上有A1B1C1D14點(diǎn),以其中任三點(diǎn)作三角形,在圓周取一點(diǎn)P,作P點(diǎn)的關(guān)于這4個三角形的西摩松線,再從P向這4條西摩松線引垂線,則四個垂足在同一條直線上。
 
  48、九點(diǎn)圓定理:三角形三邊的中點(diǎn),三高的垂足和三個歐拉點(diǎn)[連結(jié)三角形各頂點(diǎn)與垂心所得三線段的中點(diǎn)]九點(diǎn)共圓[通常稱這個圓為九點(diǎn)圓[nine-pointcircle],或歐拉圓,費(fèi)爾巴哈圓。
 
  49、一個圓周上有n個點(diǎn),從其中任意n-1個點(diǎn)的重心,向該圓周的在其余一點(diǎn)處的切線所引的垂線都交于一點(diǎn)。
 
  50、康托爾定理1:一個圓周上有n個點(diǎn),從其中任意n-2個點(diǎn)的重心向余下兩點(diǎn)的連線所引的垂線共點(diǎn)。
 
  51、康托爾定理2:一個圓周上有A、B、C、D四點(diǎn)及M、N兩點(diǎn),則M和N點(diǎn)關(guān)于四個三角形△BCD、△CDA、△DAB、△ABC中的每一個的兩條西摩松的交點(diǎn)在同一直線上。這條直線叫做M、N兩點(diǎn)關(guān)于四邊形ABCD的康托爾線。
 
  52、康托爾定理3:一個圓周上有A、B、C、D四點(diǎn)及M、N、L三點(diǎn),則M、N兩點(diǎn)的關(guān)于四邊形ABCD的康托爾線、L、N兩點(diǎn)的關(guān)于四邊形ABCD的康托爾線、M、L兩點(diǎn)的關(guān)于四邊形ABCD的康托爾線交于一點(diǎn)。這個點(diǎn)叫做M、N、L三點(diǎn)關(guān)于四邊形ABCD的康托爾點(diǎn)。
 
  53、康托爾定理4:一個圓周上有A、B、C、D、E五點(diǎn)及M、N、L三點(diǎn),則M、N、L三點(diǎn)關(guān)于四邊形BCDE、CDEA、DEAB、EABC中的每一個康托爾點(diǎn)在一條直線上。這條直線叫做M、N、L三點(diǎn)關(guān)于五邊形A、B、C、D、E的康托爾線。
 
  54、費(fèi)爾巴赫定理:三角形的九點(diǎn)圓與內(nèi)切圓和旁切圓相切。
 
  55、莫利定理:將三角形的三個內(nèi)角三等分,靠近某邊的兩條三分角線相得到一個交點(diǎn),則這樣的三個交點(diǎn)可以構(gòu)成一個正三角形。這個三角形常被稱作莫利正三角形。
 
  56、牛頓定理1:四邊形兩條對邊的延長線的交點(diǎn)所連線段的中點(diǎn)和兩條對角線的中點(diǎn),三條共線。這條直線叫做這個四邊形的牛頓線。
 
  57、牛頓定理2:圓外切四邊形的兩條對角線的中點(diǎn),及該圓的圓心,三點(diǎn)共線。
 
  58、笛沙格定理1:平面上有兩個三角形△ABC、△DEF,設(shè)它們的對應(yīng)頂點(diǎn)(A和D、B和E、C和F)的連線交于一點(diǎn),這時如果對應(yīng)邊或其延長線相交,則這三個交點(diǎn)共線。
 
  59、笛沙格定理2:相異平面上有兩個三角形△ABC、△DEF,設(shè)它們的對應(yīng)頂點(diǎn)(A和D、B和E、C和F)的連線交于一點(diǎn),這時如果對應(yīng)邊或其延長線相交,則這三個交點(diǎn)共線。
 
  60、布利安松定理:連結(jié)外切于圓的六邊形ABCDEF相對的頂點(diǎn)A和D、B和E、C和F,則這三線共點(diǎn)。
 
  61、巴斯加定理:圓內(nèi)接六邊形ABCDEF相對的邊AB和DE、BC和EF、CD和FA的(或延長線的)交點(diǎn)共線.

   歡迎使用手機(jī)、平板等移動設(shè)備訪問中考網(wǎng),2023中考一路陪伴同行!>>點(diǎn)擊查看

  • 歡迎掃描二維碼
    關(guān)注中考網(wǎng)微信
    ID:zhongkao_com

  • 歡迎掃描二維碼
    關(guān)注高考網(wǎng)微信
    ID:www_gaokao_com

  • 歡迎微信掃碼
    關(guān)注初三學(xué)習(xí)社
    中考網(wǎng)官方服務(wù)號

熱點(diǎn)專題

  • 2024年全國各省市中考作文題目匯總
  • 2024中考真題答案專題
  • 2024中考查分時間專題

[2024中考]2024中考分?jǐn)?shù)線專題

[2024中考]2024中考逐夢前行 未來可期!

中考報考

中考報名時間

中考查分時間

中考志愿填報

各省分?jǐn)?shù)線

中考體育考試

中考中招考試

中考備考

中考答題技巧

中考考前心理

中考考前飲食

中考家長必讀

中考提分策略

重點(diǎn)高中

北京重點(diǎn)中學(xué)

上海重點(diǎn)中學(xué)

廣州重點(diǎn)中學(xué)

深圳重點(diǎn)中學(xué)

天津重點(diǎn)中學(xué)

成都重點(diǎn)中學(xué)

試題資料

中考壓軸題

中考模擬題

各科練習(xí)題

單元測試題

初中期中試題

初中期末試題

中考大事記

北京中考大事記

天津中考大事記

重慶中考大事記

西安中考大事記

沈陽中考大事記

濟(jì)南中考大事記

知識點(diǎn)

初中數(shù)學(xué)知識點(diǎn)

初中物理知識點(diǎn)

初中化學(xué)知識點(diǎn)

初中英語知識點(diǎn)

初中語文知識點(diǎn)

中考滿分作文

初中資源

初中語文

初中數(shù)學(xué)

初中英語

初中物理

初中化學(xué)

中學(xué)百科