中考網(wǎng)
全國站
快捷導(dǎo)航 中考政策指南 2024熱門中考資訊 中考成績查詢 歷年中考分數(shù)線 中考志愿填報 各地2019中考大事記 中考真題及答案大全 歷年中考作文大全 返回首頁
您現(xiàn)在的位置:中考 > 知識點庫 > 初中數(shù)學知識點 > 二元一次方程 > 正文

2022年初中數(shù)學:二元一次方程的解法

來源:網(wǎng)絡(luò)資源 2022-07-14 19:37:07

中考真題

智能內(nèi)容

二元一次方程的解法

1、直接開平方法:

直接開平方法就是用直接開平方求解二元一次方程的方法。用直接開平方法解形如(x-m)2=n(n≥0)的方程,其解為x=±根號下n+m.

例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11

分析:(1)此方程顯然用直接開平方法好做,(2)方程左邊是完全平方式(3x-4)2,右邊=11>0,所以此方程也可用直接開平方法解。

(1)解:(3x+1)2=7×

∴(3x+1)2=5

∴3x+1=±(注意不要丟解)

∴x=

∴原方程的解為x1=,x2=

(2)解:9x2-24x+16=11

∴(3x-4)2=11

∴3x-4=±

∴x=

∴原方程的解為x1=,x2=

2.配方法:用配方法解方程ax2+bx+c=0(a≠0)

先將常數(shù)c移到方程右邊:ax2+bx=-c

將二次項系數(shù)化為1:x2+x=-

方程兩邊分別加上一次項系數(shù)的一半的平方:x2+x+()2=-+()2

方程左邊成為一個完全平方式:(x+)2=

當b^2-4ac≥0時,x+=±

∴x=(這就是求根公式)  例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方)

解:將常數(shù)項移到方程右邊3x^2-4x=2

將二次項系數(shù)化為1:x2-x=

方程兩邊都加上一次項系數(shù)一半的平方:x2-x+()2=+()2

配方:(x-)2=

直接開平方得:x-=±

∴x=

∴原方程的解為x1=,x2=.

3.公式法:把一元二次方程化成一般形式,然后計算判別式△=b2-4ac的值,當b2-4ac≥0時,把各項系數(shù)a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根。

例3.用公式法解方程2x2-8x=-5

解:將方程化為一般形式:2x2-8x+5=0

∴a=2,b=-8,c=5

b^2-4ac=(-8)2-4×2×5=64-40=24>0

∴x=[(-b±(b^2-4ac)^(1/2)]/(2a)

∴原方程的解為x1=,x2=.

4.因式分解法:把方程變形為一邊是零,把另一邊的二次三項式分解成兩個一次因式的積的形式,讓兩個一次因式分別等于零,得到兩個一元一次方程,解這兩個一元一次方程所得到的根,就是原方程的兩個根。這種解一元二次方程的方法叫做因式分解法。

例4.用因式分解法解下列方程:

(1)(x+3)(x-6)=-8(2)2x2+3x=0

(3)6x2+5x-50=0(選學)(4)x2-2(+)x+4=0(選學)

(1)解:(x+3)(x-6)=-8化簡整理得

x2-3x-10=0(方程左邊為二次三項式,右邊為零)

(x-5)(x+2)=0(方程左邊分解因式)

∴x-5=0或x+2=0(轉(zhuǎn)化成兩個一元一次方程)

∴x1=5,x2=-2是原方程的解。

(2)解:2x2+3x=0

x(2x+3)=0(用提公因式法將方程左邊分解因式)

∴x=0或2x+3=0(轉(zhuǎn)化成兩個一元一次方程)

∴x1=0,x2=-是原方程的解。

注意:有些同學做這種題目時容易丟掉x=0這個解,應(yīng)記住一元二次方程有兩個解。

(3)解:6x2+5x-50=0

(2x-5)(3x+10)=0(十字相乘分解因式時要特別注意符號不要出錯)

∴2x-5=0或3x+10=0

∴x1=,x2=-是原方程的解。

(4)解:x2-2(+)x+4=0(∵4可分解為2·2,∴此題可用因式分解法)

(x-2)(x-2)=0

∴x1=2,x2=2是原方程的解。

小結(jié):  一般解一元二次方程,最常用的方法還是因式分解法,在應(yīng)用因式分解法時,一般要先將方程寫成一般形式,同時應(yīng)使二次項系數(shù)化為正數(shù)。

直接開平方法是最基本的方法。

公式法和配方法是最重要的方法。公式法適用于任何一元二次方程(有人稱之為萬能法),在使用公式法時,一定要把原方程化成一般形式,以便確定系數(shù),而且在用公式前應(yīng)先計算判別式的值,以便判斷方程是否有解。

配方法是推導(dǎo)公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法

解一元二次方程。但是,配方法在學習其他數(shù)學知識時有廣泛的應(yīng)用,是初中要求掌握的三種重要的數(shù)學方法之一,一定要掌握好。(三種重要的數(shù)學方法:換元法,配方法,待定系數(shù)法)。

相關(guān)推薦: 

  2022年中考各科目重點知識匯總
 

關(guān)注中考網(wǎng)微信公眾號 

每日推送中考知識點,應(yīng)試技巧

助你迎接2022年中考!

   歡迎使用手機、平板等移動設(shè)備訪問中考網(wǎng),2024中考一路陪伴同行!>>點擊查看

  • 歡迎掃描二維碼
    關(guān)注中考網(wǎng)微信
    ID:zhongkao_com

  • 歡迎掃描二維碼
    關(guān)注高考網(wǎng)微信
    ID:www_gaokao_com

  • 歡迎微信掃碼
    關(guān)注初三學習社
    中考網(wǎng)官方服務(wù)號

熱點專題

  • 2024年全國各省市中考作文題目匯總
  • 2024中考真題答案專題
  • 2024中考查分時間專題

[2024中考]2024中考分數(shù)線專題

[2024中考]2024中考逐夢前行 未來可期!

中考報考

中考報名時間

中考查分時間

中考志愿填報

各省分數(shù)線

中考體育考試

中考中招考試

中考備考

中考答題技巧

中考考前心理

中考考前飲食

中考家長必讀

中考提分策略

重點高中

北京重點中學

上海重點中學

廣州重點中學

深圳重點中學

天津重點中學

成都重點中學

試題資料

中考壓軸題

中考模擬題

各科練習題

單元測試題

初中期中試題

初中期末試題

中考大事記

北京中考大事記

天津中考大事記

重慶中考大事記

西安中考大事記

沈陽中考大事記

濟南中考大事記

知識點

初中數(shù)學知識點

初中物理知識點

初中化學知識點

初中英語知識點

初中語文知識點

中考滿分作文

初中資源

初中語文

初中數(shù)學

初中英語

初中物理

初中化學

中學百科